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Abstract
In studies of gene-environment interactions, exposure
misclassification can lead to bias in the estimation of an
interaction effect and increased sample size. The
magnitude of the bias and the consequent increase in
sample size for fixed misclassification probabilities are
highly dependent on the prevalence of the misclassified
factor and on the interaction model. This paper describes
a relatively simple approach to assess the impact of
misclassification on bias in the estimation of
multiplicative or additive interactions and on sample size
requirements. Applications of this method illustrate that
even small errors in the assessment of environmental or
genetic factors can result in biased interaction parameters
and substantially increased sample size requirements that
can compromise the feasibility of the study. Also, an
example is provided where nondifferential
misclassification biases an additive interaction parameter
away from the null value, even under conditions where a
multiplicative interaction parameter will always be biased
toward the null value. Efforts to improve the accuracy in
measuring both genetic and environmental factors are
critical for the valid assessment of gene-environment
interactions in case-control studies.

Introduction
Measurement error in exposure assessment is one of the major
sources of bias in epidemiological studies. Most discussions on the
effects of misclassification of exposure have focused on the impact
on the relative risk and sample size in studies of a single factor
(1–9). In contrast, less attention has been given to the influence of
misclassification on the assessment of interactions between two or
more factors (4, 10). In a recent paper, Garcı´a-Closaset al. (11)
showed that under a set of conditions often satisfied in studies of
gene-environment interactions, both differential and nondifferen-
tial misclassification of a binary environmental factor biases a
multiplicative interaction effect toward the null value. This result
is also true for misclassification of genetic factors. As a result of
misclassification, the required sample size to detect a departure

from the null hypothesis of no multiplicative interaction with a
given statistical power will be increased. The impact of misclas-
sification in the study of additive interactions is more difficult to
predict and less well understood.

The increase in sample size for fixed misclassification
probabilities is dependent on the prevalence of the environ-
mental and genetic factors and on the type and magnitude of
the interaction being evaluated (4, 10). Because studies to
detect interactions typically require large sample sizes (12–
16), further increases in sample size due to exposure mis-
classification could compromise the feasibility of the study
(10). The evaluation of the effects of misclassification at the
study design phase allows investigators an opportunity to
consider alternative measures of exposure with different
levels of accuracy and to identify situations where high-
quality exposure assessment is crucial. The objective of this
paper is to describe a relatively simple approach to quantify
the impact of misclassification on bias in the estimation of
interaction effects and on the required sample sizes. In the
next sections, we describe and illustrate the approach with
examples.

Materials and Methods
Consider a case-control study designed to investigate the
presence of an interaction between a genetic and an envi-
ronment factor. Environmental factor is broadly defined as
endogenous or exogenous risk factors such as weight, en-
dogenous levels of hormones, and cigarette smoking. For
simplicity, assume that both the environmental (E 5 e) and
genetic (G 5 g) factors are binary variables that take values
of 1 for exposed or susceptible and 0 for unexposed or
nonsusceptible. Disease status (D 5 d) takes the values of 1
for affected and 0 for unaffected. The odds ratioOReg

measures the association between disease and the environ-
mental and genetic factors. Relative to subjects not exposed
to the environmental or genetic factor, we define the follow-
ing odds ratios (Table 1):OR10 denotes the odds ratio for
nonsusceptible subjects exposed to the environmental factor;
OR01 denotes the odds ratio for susceptible subjects not
exposed to the environmental factor; andOR11 denotes the
odds ratio for susceptible subjects exposed to the environ-
mental factor.

The multiplicative interaction parameter,C, is defined
as the ratio of the joint odds ratio and the product of the odds
ratios for each factor at the reference level of the other
factor, namely,C 5 OR11/(OR10 3 OR01). In the absence of
a multiplicative interaction,C 5 1.0 andOR115 OR10 3
OR01.

The additive interaction parameter,F, is defined as the
ratio of the joint excess risk (OR11 2 1) and the sum of the
excess risks for each factor at the reference level of the other
factor, namely,F 5 (OR11 2 1)/(OR10 2 1) 1 (OR01 2 1).
Other definitions for additive interaction parameters are pos-
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sible (17) but will not be discussed in this paper. In the
absence of an additive interaction,F 5 1.0 and (OR11 2
1) 5 (OR10 2 1) 1 (OR01 2 1). It should be noted thatF is
undefined when bothOR10 and OR01 are 1.0, and that
whereasC takes values from 0 to1`, F takes values from
-` to 1`.

Misclassification of a dichotomous exposure is defined by
the misclassification probabilities sensitivity (se) and specific-
ity (sp; Ref. 18). Sensitivity is the probability that a truly
exposed subject is classified as exposed, and specificity is the
probability that a truly unexposed subject is classified as un-
exposed. Nondifferential misclassification occurs when the
misclassification probabilities are independent of the disease
status, whereas differential misclassification occurs when the
misclassification probabilities are dependent on the disease
status. In the examples presented in this paper, we assume
nondifferential misclassification; however, the approach de-
scribed in this section can be used for both nondifferential and
differential misclassification. Because nearly all instruments in
epidemiology have some degree of error, sensitivity and spec-
ificity can also be defined for two instruments with different
degrees of accuracy rather than for an error-free and an error-
prone instrument. We will refer to the more accurate instrument
as “gold standard” and the less accurate instrument as “error
prone”.
Sample Size Calculations.Sample size calculations pre-
sented in this paper were performed using the approach
described by Lubin and Gail (19) and discussed by Garcı´a-
Closas and Lubin (16). These calculations can be performed
using the program POWER that is available free of charge by
e-mail from connorj@mail.nih.gov. In the examples pre-
sented in the next section, calculations assumed independ-
ence of the environmental and genetic factors in the popu-
lation, a two-sided type I error of 5%, a type II error of 20%
(i.e., power 5 80%), a case:control ratio of 1:1, and a rare
disease in the population (defined in the examples asP(D 5
1uE 5 0, G 5 0) 5 0.001).

To calculate the sample size required to detect a multipli-
cative interaction of magnitudeC or an additive interaction of
magnitudeF, values forOR10 andOR01 need to be specified.
These parameters are often difficult to specify, and the marginal
odds ratios for the environmental factor (ORE) and genetic
factor (ORG), i.e., the odds ratios for each factor when the other
factor is ignored, are often better known. The relationship
betweenOR10, OR01,andC (or F) and the marginal odds ratios
(ORE andORG) is given in “Appendix 1”. Sample size calcu-
lations in two of the examples of multiplicative interactions
presented in this paper are based on estimates of marginal

effects from previous studies andC, rather than onOR10, OR01,
andC.
An Approach to Assess the Impact of Misclassification on
Bias and Sample Size.The impact of misclassification of
binary and independent factors, measured with errors that are
independent of each other, can be assessed by the following
procedure:

(a) Specify values forP(E 5 1), P(G 5 1), OR10, OR01,
andOR11 in the absence of misclassification or when using a
“gold standard” instrument.

(b) Calculate the required sample size for a given power to
detect the interaction effectC or F.

(c) CalculateP(E* 5 1), P(G* 5 1), OR*10, OR*01, and
OR*11 for values of sensitivity and specificity of the environ-
mental and genetic factors as indicated in “Appendix 2”, where
“*” denotes the observed parameters in the presence of mis-
classification or when using an “error prone” instrument.

(d) Calculate the sample size using the observed parame-
ters in the presence of misclassification.

It should be noted that this methodology is not appli-
cable to ordered categorical or continuous exposure vari-
ables because without restrictions on the disease rate and on
the form of the odds ratio function, the shape of the rela-
tionship with disease will generally be distorted by the
measurement error (20).
Effect of Misclassification on Bias and Sample Size.Both
differential and nondifferential misclassification of environ-
mental or genetic factors bias a multiplicative interaction effect
toward the null value, provided that the environmental and
genetic factors are binary and independent, errors are independ-
ent, and the sum of sensitivity and specificity is$1 (i.e., the
classification instrument is better than random) (11). Under
these circumstances, the sample size required to reject the null
hypothesis of no multiplicative interaction with a given statis-
tical power will be increased.

The direction of the bias to the additive interaction
parameter in the presence of misclassification is more dif-
ficult to predict because we do not have a general rule as in
the case of multiplicative interactions (11). Using the
method described in the previous section, we explored em-
pirically the direction of the bias to the additive interaction
parameter,F, under a range of parameter values, assuming
the same conditions indicated above for a multiplicative
interaction. We found that under these conditions, nondif-
ferential misclassification of the genetic or environmental
factor generally tends to bias the additive interaction param-
eter toward the null value. However, we did find several
examples where the additive interaction is biased away from
the null in the presence of nondifferential misclassification
in the environmental or genetic factor assessment. Although
most of these scenarios were extreme situations, we found
examples that can be encountered in practice. These exam-
ples followed a pattern where a protective factor measured
with reduced specificity interacts with a risk factor of dis-
ease. We illustrate this situation in an example presented in
Table 5. However, the approach described in this section can
be used to assess the direction of the bias in each particular
situation.

Results
Example of a 2-fold Multiplicative Gene-Environment In-
teraction. Consider an example of a multiplicative gene-
environment interaction where the odds ratio for the effects
of the environmental factor alone (OR10) and the genetic

Table 1 Definition of odds ratios (OR10, OR01, OR11) and interaction
parameters (C andF)a for the relationship between two dichotomous

environmental and genetic factors and disease

Genetic factor (G)

G 5 0 G 5 1

Environmental factor (E)
E 5 0
E 5 1

1.0b

OR10

OR01

OR11

a C 5
OR11

OR10 z OR01

F 5
~OR11 2 1!

~OR10 2 1! 1 ~OR01 2 1!
b Reference category.
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factor alone (OR01) are both 2.0, and the joint odds ratio for
both factors (OR11) is 8.0. Because the joint odds ratio is two
times what would be expected under a multiplicative risk
model, these values represent a 2-fold interaction (C 5 2.0).
This example corresponds to a pattern of interaction where
both the genetic and the environmental factors increase the
risk of disease by themselves, and the joint effect is different
from the effect of each factor acting alone [pattern 4 as
described by Khouryet al. (21) and model E as described by
Ottman et al. (22)]. We chose an example of this pattern
because we believe that it is reasonable in the context of
complex multifactorial diseases like cancer, where environ-
mental and genetic factors are likely to influence the risk of
cancer through multiple pathways.

Table 2 illustrates the impact of reducing sensitivity of the
environmental factor assessment from 1.0 to 0.80, both in the
absence and presence of reduced sensitivity in the assessment
of the genetic factor (from 1.0 to 0.95). Although measures of
genetic markers are generally considered less prone to error
than measures of environmental exposures, some degree of
error may be present due to technical errors in determining the
genotype or due to failure to analyze or identify relevant alleles
(8, 10). In Table 2, the prevalence for both factors is 0.5, and
the specificity for the assessment of both the genetic and
environmental factors is 1.0.

In the absence of misclassification of the genetic factor,
reducing sensitivity of the environmental factor assessment
from 1.0 to 0.80 increases the sample size from 720 to 1600
(2.2-fold; Table 2). This increase in sample size is driven by
changes in the observed prevalence of the environmental
factor and the observed odds ratios. In this example, the
interaction parameter is underestimated from 2.00 to 1.56,
the effect of the environmental factor alone is underesti-
mated from 2.0 to 1.71, and the joint effect is underestimated
from 8.00 to 6.86. In contrast, the effect of the genetic factor
alone is overestimated from 2.00 to 2.57, although we as-
sumed no errors in the genetic factor assessment. This bias
occurs because the genotype effect on disease is larger
among truly exposed than truly unexposed subjects; there-
fore, when truly exposed subjects are wrongly classified as
unexposed because of a reduced sensitivity of exposure, the
observed genotype effect among subjects classified as un-
exposed will be biased away from the null. The same amount
of exposure error when sensitivity of the genetic factor is
0.95 rather than 1.00 further increases the sample size from
1600 to 2044. Thus, errors in exposure assessment coupled
with errors in measuring the genetic susceptibility factor can
have a substantial impact on sample size.

In Fig. 1, we explore in more detail the effects of misclas-

sification on sample size. Thesolid linesin Fig. 1 represent the
sample size required to detect the specified 2-fold interaction in
the absence of misclassification as a function of the true prev-
alence of the environmental factor for 0.5 (Panels 1–3) and 0.1
(Panels 4–6) prevalence of the genetic factor. Thedashed lines
in Fig. 1 illustrate the impact of misclassification of the envi-
ronmental factor on sample size for selected values of sensi-
tivity and specificity of exposure assessment.

For environmental and genetic factors with 0.5 true prev-
alence, reducing the environmental factor sensitivity from 1.0
to 0.8 and 0.6 (while holding specificity to 1.0) will increase the
sample size from 720 to 1600 (2.2-fold) and to 3130 (4.4-fold)
cases, respectively (Fig. 1,Panel 1). As the true prevalence of
the environmental factor increases, the impact of reduced ex-
posure assessment sensitivity will be stronger, as shown in Fig.
1,Panel 1. In contrast, reduced specificity has a stronger impact
for rare than for common factors as shown in Fig. 1,Panel 2.
For the specified parameters, reduced specificity tends to have
a smaller impact on sample size than that of reduced sensitivity,
except for very low prevalence of exposure.Panel 3shows the
combined effect of reduced sensitivity and specificity of expo-
sure assessment.

Fig. 1,Panels 4 – 6shows similar patterns asPanels 1–3
for a genetic factor with 0.1 prevalence. For environmental
factors with 0.5 true prevalence, reducing the environmental
factor sensitivity from 1.0 to 0.8 and 0.6 (while holding
specificity to 1.0) will increase the sample size from 1200 to
2700 (2.3-fold) and to 5390 (4.5-fold) cases, respectively. It
should be noted that although the baseline sample size in the
absence of misclassification is increased, the percent in-
crease in sample size is very similar as it is inPanels 1–3.
The reason is that in Fig. 1, we assumed that the genetic
factor is perfectly measured and independent from the en-
vironmental factor. Therefore, the impact of misclassifica-
tion on the environmental factor does not depend on the
prevalence of the genetic factor.
Example of a 2-fold Additive Gene-Environment Inter-
action. Generally, when both the genetic and the environ-
mental factors increase the risk of disease by themselves and
in combination, as in the previous example, nondifferential
misclassification tends to bias the additive interaction effect
toward the null value. However, the direction of the bias to
the additive interaction parameter due to nondifferential
misclassification cannot be easily predicted. In this section,
we provide an example of an additive gene-environment
interaction where nondifferential misclassification of the
environmental factor biases the additive interaction param-
eter away from the null value, even though the factors are

Table 2 Minimum number of cases (case;control ratio5 1) required to detect a 2-fold multiplicative gene-environment interaction (OR10 5 2.0, OR01 5 2.0,
OR11 5 8.0) for different levels of accuracy of the environmental and genetic factorsa

Prevalences

C*b

Odds ratios
No. of
casesEnvironmental factor

sensitivity
Genetic factor

sensitivity
Environmental

factor
Genetic
factor

OR10 OR01 OR11

1.0 1.0 0.50 0.50 2.00 2.00 2.00 8.00 720
0.8 1.0 0.40 0.50 1.56 1.71 2.57 6.86 1600
1.0 0.95 0.50 0.48 1.83 2.18 1.91 7.64 900
0.8 0.95 0.40 0.48 1.46 1.82 2.39 6.38 2044

a Specificity for both genetic and environmental factor assessment5 1.0.
b C*, observed interaction parameter.
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binary and independent, and the misclassification probabil-
ities for the environmental factor are independent of the
genetic factor. In this example, the prevalence for the envi-
ronmental factor is 0.3 and for the genetic factor is 0.5; the

odds ratio for the effect of the environmental factor alone
(OR10) is 0.5 and for the genetic factor alone (OR01) is 2.0;
and the joint odds ratio for both factors (OR11) is 2.0. These
values represent a 2-fold additive interaction (F 5 2.0).

Fig. 1. Minimum number of cases (case:control ratio5 1) required to detect a 2-fold interaction (OR10 5 2, OR01 5 2, andOR11 5 8) with 80% power as a function
of the true prevalence of the environmental factor (P[E 5 1]), for 0.5 and 0.1 prevalence of the genetic factor, and for selected values of sensitivity and specificity of the
environmental factor assessment.

Table 3 Minimum number of cases (case;control ratio5 1) required to detect a 2-fold additive gene-environment interaction (OR10 5 0.5, OR01 5 2.0, OR11 5
2.0) for different levels of accuracy of the environmental and genetic factorsa

Prevalences

F*b

Odds ratios
No. of
casesEnvironmental factor

specificity
Genetic factor

sensitivity
Environmental

factor
Genetic
factor

OR10 OR01 OR11

1.0 1.0 0.30 0.50 2.00 0.5 2.00 2.00 2930
0.8 1.0 0.44 0.50 2.88 0.5 1.68 1.52 3486
1.0 0.95 0.30 0.48 1.87 0.51 2.05 2.05 3206
0.8 0.95 0.44 0.48 2.46 0.51 1.72 1.56 3663

a Sensitivity for environmental factor assessment5 1.0; specificity for genetic factor assessment5 1.0.
b F*, observed interaction parameter.
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Table 3 illustrates the impact of reducing the specificity
of the environmental factor assessment from 1.0 to 0.8, both
in the absence and presence of reduced sensitivity in the
genetic factor assessment. The sensitivity for the environ-
mental factor and the specificity for the genetic factor are
both 1.0. In the absence of misclassification, the required
sample size for 80% power is 2930 cases and 2930 controls.
Reducing exposure specificity from 1.0 to 0.80 results in
bias of the additive interaction parameter away from the null
from 2.0 to 2.88 while increasing the required sample size to
3486 cases (1.19-fold increase). Paradoxically, when the
sensitivity of the genetic factor is 0.95 rather than 1.0, the
same amount of environmental factor error results in a
smaller bias to the additive interaction parameter (from 2.0
to 2.46) while further increasing the required sample size to
3993 cases. Thus, reduced specificity in measuring a pro-
tective environmental factor can bias the additive interaction
parameter away from the null value while increasing the
sample size to reject the null hypothesis of no additive
interaction.
COMT 2 Genotype, BMI, and Breast Cancer Risk. The
COMT gene codes for an enzyme involved in the inactiva-
tion of estrogen catechols thought to be involved in breast
carcinogenesis (23). A single-base polymorphism in the
COMT gene has been associated with low-enzyme activity
(24) and could result in decreased detoxification of catechol
estrogens and subsequent increase in breast cancer risk (25).
High BMI among postmenopausal women is associated with
a moderate increase in breast cancer risk (26), which could
be mediated by a higher production of estrogens among
postmenopausal obese women (27). Thus, an investigator
may want to evaluate if the odds ratio for obesity among
postmenopausal women is higher for women with theCOMT
LL genotype (homozygous low activity) than for women
with the COMT HH or HL genotypes (homozygous high
activity or heterozygous).

Table 4 shows the minimum number of women needed to
detect a 2-fold interaction (C 5 2.0) between obesity, defined
as BMI $30 kg/m2, and theCOMT LL genotype using two
alternative methods to estimate a women’s BMI: with actual
measurements of weight and height and self-reported weight
and height. Assuming a prevalence of obesity of 0.15, a mar-
ginal odds ratio for obesity of 1.5, a prevalence ofCOMT LL
genotype of 0.25, and a marginal odds ratio of 2.0 forCOMT

LL genotype (25), one would need to study 1016 cases and 1016
controls to detect a 2-fold interaction (C 5 2.0). These mar-
ginal odds ratios and interaction parameter imply:OR10 5 1.10,
OR01 51.72, andOR115 3.78 (calculated as indicated in
“Appendix 1”).

If self-reported rather than actual measurements of
weight and height are used to measure BMI, one would
expect to classify correctly 75% women with truly high BMI
and 99% with truly normal/low BMI (28). According to
these misclassification probabilities, the observed interac-
tion parameter,C, will be 1.83 rather than 2.0, and the
required sample size to detect the interaction will be in-
creased from 1016 cases to 1548 cases and an equal number
of controls. Although obtaining actual measurements of
weight and height may increase the total cost of data col-
lection, the savings from enrolling, collecting biological
samples, and determining the genotype in 532 fewer cases
and 532 fewer controls may off-set the increased cost of data
collection. Moreover, using actual measurements of weight
will provide unbiased estimates for the “true” interaction
parameter and the obesity andCOMT LL odds ratios.
Benzo(a)pyrene, GSTM1 Genotype, and Lung Cancer
Risk Among Nonsmokers. Occupational exposure to ben-
zo(a)pyrene has been associated with about a 2-fold increase
in lung cancer risk among nonsmokers (29). Detoxification
of benzo(a)pyrene by conjugation to glutathione is catalyzed
by the GSTM1 enzyme (glutathione S-transferase M1). A
homozygous deletion of theGSTM1gene is responsible for
a lack of enzyme activity and has been associated with about
a 1.5-fold increase in lung cancer risk (30). Thus, subjects
exposed to benzo(a)pyrene who have the homozygous dele-
tion in theGSTM1gene could be at a particularly high risk
of lung cancer. Dewaret al. (31) have estimated a sensitivity
of 0.6 and a specificity of 0.99 for the classification of
exposure to benzo(a)pyrene based on a job-exposure matrix
applied to job titles from a personal interview, as compared
to exposure based on a more complex procedure involving
the evaluation of a detailed job history by a trained team of
chemists and industrial hygienists. Based on these estimates,
a study to detect a 2-fold interaction (C 5 2.00, OR10 5
1.03, OR01 5 1.20, OR115 2.49) between theGSTM1null
genotype and exposure to benzo(a)pyrene assessed by the
evaluation of a detailed job history would need to include
about 672 cases and 672 controls (Table 5). In contrast,
using a job-exposure matrix to estimate benzo(a)pyrene ex-
posure biases the interaction parameter to 1.76, and the
required sample size is more than twice the previous estimate
(1413 cases and 1413 controls).

2 The abbreviations used are: COMT, catechol-O-metyltransferase; BMI, body
mass index.

Table 4 Minimum number of cases (case;control ratio5 1) required to detect a multiplicative interaction (C)a between the COMT LL genotype and obesity in
postmenopausal breast cancer risk for different levels of obesity accuracy

Method of obesity assessment
Obesityb

C*
No. of
casesSensitivityc Specificityc Prevalence

Measured weight and height 1.0 1.0 0.15 2.00 1016
Self-reported weight and height 0.75 0.99 0.12 1.85 1548

a Assumptions and notation:
1. C*, observed interaction parameter.
2. Marginal odds ratio for obesity of 1.50 for measured weight and height and 1.43 for self-reported weight and height (26).
3. Prevalence of COMT LL of 25%; marginal odds ratio for COMT LL genotype of 2.00 (25).
4. COMT genotype is measured without error.
b BMI 5 weight/height2 (kg/cm2). Obesity: BMI $ 30.
c Estimates of sensitivity and specificity using measured weight and height as the gold standard (28).
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Discussion
Misclassification of environmental or genetic risk factors can
greatly increase the sample size required to evaluate gene-
environment interactions in case-control studies. As illustrated
in our examples, when the interaction effect is moderate to
small, even relatively small biases to the interaction parameter
can lead to large increases in sample size. This is because
sample size requirements tend to increase nonlinearly as effects
become closer to the null value. The effects of misclassification
are highly dependent on both the true risk model and the
distribution of the misclassified risk factors in the population;
therefore, the potential effects of misclassification on the inter-
action parameter and the required sample size should be eval-
uated in each particular situation. This paper provides a proce-
dure to determine the observed interaction parameter and
required sample size based on assumptions about the accuracy
of exposure assessment. This procedure can be used for any
pattern of multiplicative or additive gene-environment interac-
tion such as those described by Ottmanet al. (22) and Khoury
et al. (21). Moreover, this procedure is not unique to studies
involving genetic factors, and it can be used for any two binary
and independent factors, measured with errors that are inde-
pendent of each other. More complex procedures are needed for
polytomous categorical or continuous factors, for non-indepen-
dent factors, or for factors measured with correlated errors.

Both differential and nondifferential misclassification of
the environmental factor biases a multiplicative interaction
effect toward the null value provided that the environmental
and genetic factors are binary and independent, misclassifica-
tion is independent of the genetic factor, and the sum of sen-
sitivity and specificity is$1 (i.e., the classification instrument
is better than random; Ref. 11). However, bias to the additive
interaction parameter cannot be easily predicted, even under
this set of conditions. In fact, we provide an example of an
additive interaction between a genetic susceptibility factor and
a protective environmental factor, where reduced specificity in
the assessment of the environmental factor results in an over-
estimation of the additive interaction parameter and an increase
in sample size. Although this and all other examples in this
paper assume nondifferential misclassification with respect to
the disease status, our procedure can also be used for differen-
tial misclassification.

The observations in this paper point out the trade-off
between using more accurate and usually more expensive meas-
ures of exposure assessment in a smaller number of subjects or
using less-accurate but usually cheaper measures in a larger
number of subjects. When making these choices, it should be
borne in mind that increasing sample size increases the study

power to detect the attenuated interaction; however, the inter-
action effect is still biased. In this case, adjustments based on
estimates of sensitivity and specificity are required to obtain an
unbiased estimate of the true interaction effect. It should be
noted that if the conditions used in our paper arenot satisfied
(i.e., binary genetic and environmental factors, independent of
each other in the population and independence of misclassifi-
cation probabilities for both factors), there may be unpredict-
able effects of misclassification on the direction of the bias to
the multiplicative interaction (11). Moreover, as indicated
above, the direction of the bias to the additive interaction
cannot be generally predicted, even under the conditions used
in our paper.

In conclusion, efforts to improve the accuracy of exposure
assessment for both the environmental and genetic factors can
greatly reduce sample size requirements to study interactions
and are critical for accurate assessment of gene-environment
interactions in case-control studies. Our examples also illustrate
the importance of routine assessment of accuracy in genotype
assays through quality control procedures because of the large
impact of small degrees of error.

Appendix 1
Calculation of Marginal Odds Ratios

For given values of the effects for the environmental and genetic factor
alone (OR10 and OR01), interaction effect (c or f), and prevalence of the
environmental factor and genetic factors (P(E5 1) and P(G5 1)), the environ-
mental and genetic marginal effects (ORE and ORG), can be calculated by using
in the following set of equations.

For multiplicative interactions:

ORE 5
~1 2 P~G 5 1!!pOR10 1 P~G 5 1!pOR10pOR01pC

~1 2 P~G 5 1!! 1 P~G 5 1!pOR01

ORG 5
~1 2 P~E 5 1!!pOR01 1 P~E 5 1!pOR10pOR01pC

~1 2 P~E 5 1!! 1 P~E 5 1!pOR10

For additive interactions:

ORE 5
~1 2 P~G 5 1!!pOR10 1 P~G 5 1!p@~OR10 1 OR01 2 2!pC 1 1#

~1 2 P~G 5 1!! 1 P~G 5 1!pOR01

ORG 5
~1 2 P~E 5 1!!pOR01 1 P~E 5 1!p@~OR10 1 OR01 2 2!pC 1 1#

~1 2 P~E 5 1!! 1 P~E 5 1!pOR10

For given values of the environmental and genetic marginal effects (ORE and
ORG), interaction effect (C or F), and prevalence of the environmental factor and
genetic factors (P(E 5 1) andP(G 5 1)), the effects of the environmental and
genetic factors alone (OR10 andOR01) can be calculated by solving for OR10 and
OR01 in the above set of equations.

All calculations in this Appendix can be performed easily using a spread-
sheet (EXPECT) that can be obtained by e-mail from connorj@mail.nih.gov.

Table 5 Minimum number of cases (case;control ratio5 1) required to detect a multiplicative interactiona between lung cancer risk and occupational exposure to
benzo(a)pyrene and the GSTM1 null genotype among nonsmokers for different levels of exposure accuracy

Method of
benzo(a)pyrene

exposure assessment

Benzo(a)pyrene
C*

No. of
casesSensitivityb Specificityb Prevalence

Detailed job historyc 1.0 1.0 0.24 2.00 688
Job-exposure matrixd 0.60 0.99 0.15 1.76 1491

a Assumptions and notation:
1. C*, observed interaction parameter.
2. Marginal odds ratio for benzo(a)pyrene exposure of 1.60 for detailed job history and 1.47 for job-exposure matrix (29).
3. Prevalence of GSTM1 null of 50%; marginal odds ratio for GSTM1 null genotype of 1.50 (30).
4. GSTM1 genotype is measured without error.
b Estimates of sensitivity and specificity using detailed job history as the gold standard (31).
c Substance exposure inferred from an in-depth interview of the subject with an evaluation of the subject’s reported job history by a trained team of chemists and hygienists.
d Substance exposure inferred from a job-exposure matrix applied to the job titles obtained from an interview of the subject.

1048 Misclassification in Gene-Environment Interactions



Appendix 2: Calculation of observed parameters in the presence of misclassification
The observed parameters in the presence of misclassification, P(G*5 1), P(E*5 1), OR*10, OR*01, and OR*11, for given values for sensitivity and specificity can

be calculated using a spreadsheet (EXPECT) that can be obtained by e-mail from connorj@mail.nih.gov.
Below are the formulae used in calculations performed by EXPECT.

Expected cell counts in the absence of misclassification from a case-control study of a gene-environment interaction

G 5 1 G 5 0

E 5 1 E 5 0 E 5 1 E 5 0

D 5 1 a1 b1 D 5 1 a0 b0

D 5 0 c1 d1 D 5 0 c0 d0

Given P(G 5 1), P(E 5 1), OR10, OR01, andOR11, the expected cell counts in Table 2 are:
a1 5 l 3 P(E 5 1) 3 P(G 5 1) 3 OR11

b1 5 l 3 (1 2 P(E 5 1)) 3 P(G 5 1) 3 OR01

c1 5 P(E 5 1) 3 P(G 5 1)
d1 5 (1 2 P(E 5 1)) 3 P(G 5 1)
a0 5 l 3 P(E 5 1) 3 (1 2 P(G 5 1)) 3 OR10

b0 5 l 3 (1 2 P(E 5 1)) 3 (1 2 P(G 5 1))
c0 5 P(E 5 1) 3 (1 2 P(G 5 1))
d0 5 (1 2 P(E 5 1)) 3 (1 2 P(G 5 1))

wherel 5
1

~1 2 P~E 5 1!! 3 ~1 2 P~G 5 1!! 1 P~E 5 1! 3 ~1 2 P~G 5 1!! 3 OR10 1 ~1 2 P~E 5 1!! 3 P~G 5 1! 3 OR01 1 P~E 5 1! 3 P~G 5 1! 3 OR11

Let se0E sp0E andse1E sp1E be the sensitivity and specificity of the environmental factor among controls and cases, respectively, andse0G sp0G andse0G sp0G be the
sensitivity and specificity of the genetic factor among controls and cases, respectively. The expected cell counts among the controls in the presence of misclassification
(denoted by an asterisk *) are calculated as:

3
se0E 3 se0G ~1 2 sp0E! 3 se0G se0E 3 ~1 2 sp0G! ~1 2 sp0E! 3 ~1 2 sp0G!
~1 2 se0E! 3 sg0G sp0E 3 se0G ~1 2 se0E! 3 ~1 2 sp0G! sp0E 3 ~1 2 sp0G!
seE 3 ~1 2 seG! ~1 2 sp0E! 3 ~1 2 se0G! se0E 3 sp0G ~1 2 sp0E! 3 sp0G

~1 2 se0E! 3 ~1 2 se0G! sp0E 3 ~1 2 se0G! ~1 2 se0E! 3 sp0G sp0E 3 sp0G

4 3 3
c1

d1

c0

d0

4 5 3
c1*
d1*
c0*
d0*
4

The expected cell counts among cases are:

3
se1E 3 se1G ~1 2 sp1E! 3 se1G se1E 3 ~1 2 sp1G! ~1 2 sp1E! 3 ~1 2 sp1G!
~1 2 se1E! 3 se1G sp1E 3 se1G ~1 2 se1E! 3 ~1 2 sp1G! sp1E 3 ~1 2 sp1G!
se1E 3 ~1 2 se1G! ~1 2 sp1E! 3 ~1 2 se1G! se1E 3 sp1G ~1 2 sp1E! 3 sp1G

~1 2 se1E! 3 ~1 2 se1G! sp1E 3 ~1 2 se1G! ~1 2 se1E! 3 sp1G sp1E 3 sp1G

4 3 3
a1

b1

a0

b0

4 5 3
a1*
b1*
a0*
b0*
4

The observed parameters in the presence of misclassification,P(G* 5 1), P(E* 5 1), OR*10, OR*01, andOR*11, are then calculated from the expected cell counts. Note
that for nondifferential misclassification of the environmental and genetic factors se0E 5 se1E, sp0E 5 sp1E, and se0G 5 se1G, sp0G 5 sp1G, respectively.
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